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1 Introduction

Use of the Edgeworth series to predict energy loss and scattering angle in
Monte Carlo calculations of particle transport through thick targets is de-
scribed in [1]. As mentioned therein, accurate calculation of energy loss and
angular distribution involves—besides the Edgeworth series—simulating in-
dividual events above some threshold in energy loss or angle. While the
underlying algorithms are quite straightforward, their practical application
results in rather complicated code. When treating such code as a ‘black
box’ this poses no problem, but delving into computational details or mak-
ing modifications to it may be more daunting. Yet, modifications may be
necessitated, e.g., by implementing a different physical model for energy loss
and/or scattering or going to higher orders of the Edgeworth series.

‘Gaussians-with-tails’ arise in many other problems, notably when ran-
dom variables are summed over a sample which falls short of the asymptotic
Gaussian limit. As long as the underlying processes are well understood
and the random variables under study are additive over a series of events
problems of this type might benefit from a similar approach. For such cases
a detailed account of the Monte Carlo procedure for the present applications
might be useful.

This note describes in some detail the routines which select energy loss
and angular distribution for Monte Carlo muon transport in a thick tar-
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get using the algorithms of [1]. The routines are intended for application
to muon ionization cooling but—with little modification—can be used to
transport other charged particles as well. These algorithms are analog sim-
ulations, i.e., they do not introduce weights as part of the procedure. They
are therefore suited equally to analog-type calculations, which mimic com-
plete events in the computer, as to weighted ones where emphasis is on
estimating averaged properties. Below, in Secs. 2 and 3, energy loss and
angular selection routines are described in turn. The series associated with
these two processes differ only in the practical sense that for the scattering
application entire orders vanish—along with many terms of the remaining
orders—due to the symmetry about zero of the (projected) angular distribu-
tion. Such symmetry is absent in the energy loss problem. For comparable
computational effort the multiple scattering series might be pursued to much
higher order than the energy loss series. For each process, a brief review of
the physical model is followed by a description of the Monte Carlo procedure
in sufficient detail to interpret the code. Large energy losses and angular
deflections are simulated individually. Since they form part of the program
the algorithms for this are briefly described here even if they do not rely on
the Edgeworth series. Complications arising from transport through targets
made of compounds and mixtures are dealt with in Sec. 4. Sec. 5 compares
methods of calculating the cumulants of the energy loss and scattering an-
gle distribution. In conclusion, Sec. 6 offers a few brief remarks. Some
mathematical details are relegated to the Appendices.

2 Energy Loss

The series used here is the full Edgeworth series, obtained via the method
outlined in [2] and briefly sketched in App. 1. The series is reproduced here
to order presently incuded in the routines [3]:
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where G(x) is the normal distribution, the Hi(x) are the Hermite poly-
nomials (see App. 2) and x represents a standardized random variable,
(∆E − ∆E)/σ∆E , where ∆E is energy lost in a Monte Carlo step. The
κi in Eq. 1 are the cumulants of the probability distribution of x. As shown
in [1], in Vavilov’s approach [4] the moments (about the origin) of indi-
vidual events times their expected number are essentially equivalent to the
cumulants of the joint distribution. The cumulants may be more accurately
evaluated using formulae which follow directly from their definition. See,
e.g., ref. [2], where cumulants are expressed in terms of the moments, or
App. 3 for a more convenient representation in terms of both moments and
cumulants of lower order. As discussed below and in Sec. 5, the moments
approximation yields quite accurate results for typical applications. The
user must specify the desired order of the Edgeworth series, i.e., how far to
go in Eq. 1. Each of the square brackets represents such an order, beginning
with the zeroth-order plain Gaussian. In general, all terms of the same order
should either be included or neglected [2], although this principle has not
been tested in these problems. As a practical matter a minimum order of
three is assumed, i.e., the first three square brackets of Eq. 1 are included
automatically. At present the maximum order is six, i.e., the entire Eq. 1.
If yet higher orders are desired they must be added to the program. As
Eq. 1 shows quite graphically, increasing amounts of coding and cpu time
are required to include these higher orders for what are, typically, decreasing
gains in relative accuracy.
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2.1 Physical Model

The distribution of energy transfer, ε, in free µ–e scattering is given by
Bhabha’s formula [5]:

w(ε) =
ξ

ε2

[
1 − β2 ε

εmax
+

ε2

2E2
0

]
(2)

where εmax is the maximum energy transfer, E0 is the incident muon’s to-
tal energy, ξ = 2πNAvZ

2r2
eme/(Aβ2) with re the classical electron radius,

me its mass, and with the usual meaning for the other symbols. When en-
ergy transfer is large compared to electron binding energies, Eq. 2 may be
assumed to hold and the electron target may be taken as stationary. For
smaller energy transfers motion of the bound electrons and the quantized
nature of atomic energy levels complicate matters considerably.

In [1] the simplifying assumption is made that Eq. 2 holds for ε above
the average ionization potential, εi, while below εi it is conjectured that:

w<(ε) =
ξεi

ε3
. (3)

It is further assumed that there exists a minimum energy transfer, εmin,
below which w(ε) = 0, as must be true below the lowest excited state of
the atom (neglecting a small ε resulting from atomic recoil). As a practical
matter, εmin is determined here by equating the average energy loss as de-
termined by Eqs. 2 and 3 with that obtained from the Bethe-Bloch formula.
The average energy loss for individual losses below some arbitrary upper
limit, εc, (less than εmax) is called the restricted energy loss, (dE/dx)R, and
is described by a variant of the Bethe-Bloch formula [6]:
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where δ is the density effect correction. The value of εmin, which depends
on muon energy, then becomes [7]:
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The value of εmin thus obtained is about one tenth that of εi. This appears
more reasonable than the very small εmin which results if one assumes that
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Eq. 2 holds throughout, the latter being closer to the Vavilov approxima-
tion [4]. Note that use of the Bethe-Bloch formula is a matter of choice
and—if preferred—one could use other formulae or even tabulated values
for dE/dx. For large energy transfer complete µ–e events are simulated.
The minimum energy transfer for individual simulation coincides with the
maximum transfer for those events included in the collective distribution,
denoted by εc as in Eq. 4.

In summary, there are thus three regimes of energy transfer in this model:

1. εmin < ε < εi , with scattering law given by Eq. 3.

2. εi < ε < εc , with scattering law as per Eq. 2. The κ for processes (1)
and (2) may be combined:

κi = N c

(∫ εi

εmin

εiw<(ε)dε +
∫ εc

εi

εiw>(ε)dε

)
(6)

where N c is the expected number of encounters, in a step.

3. ε > εc , the number of such collisions is determined on a random basis
from a Poisson distribution and ε for each such µ–e collision is directly
sampled from Eq. 2 assuming a free and stationary electron target.

Combining the first two ε-regimes to determine the κ of the collective
regime is contrary to [1] where they were kept apart and angular deflections
associated with each energy loss regime were evaluated separately. In the
present program this angular deflection is determined jointly as well, see
below. The Edgeworth series approach easily accommodates either model.

2.2 Monte Carlo Strategy

As mentioned in connection with Eq. 1, x is a standardized random variable:

x =
∆E − (dE/dx)R

σ
(7)

where (dE/dx)R is the restricted average energy loss ( ε ≤ εc ). Integrating
Eq. 1 term-by-term over all x shows that only the normal distribution con-
tributes: for odd order Hermite polynomials (with odd powers of x only)
the contributions above and below x = 0 cancel, while for the even orders
they are separately equal to zero. Likewise, integrals of the first moment are
zero for each term. Therefore, to any order, the x-distribution is properly
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normalized and is guaranteed to yield the correct average—in this case the
(restricted) Bethe-Bloch prediction. (Integrals connected with the Edge-
worth series, here and below, use infinite limits in spite of the finite range
for energy loss or scattering angle. This is not strictly necessary but simpli-
fies matters enormously and is not expected to introduce significant error.)
The strategy for Monte Carlo selection from Eq. 1 is:

• First choose randomly between positive and negative parts of the x-
domain by comparing the integrals of Eq. 1 above and below zero.

• Given the x-domain, a particular term of the type bkx
kG(x) is selected

from among the positive ones in that domain: odd power terms with
negative coefficient for x < 0 but with positive coefficient for x > 0,
even power terms with positive coefficients on both sides. The selection
probability for a given term is proportional to its integral over the
domain.

• Given a term of the type xkG(x) and its x-domain, a particular value
of x is selected from such a (normalized) distribution.

• At the chosen value of x, the sums of all positive terms (f+) terms and
of all negative terms (f−) of Eq. 1 are evaluated. (Negative terms arise
solely because of the Hi(x) since the coefficients displayed in Eq. 1 are
all positive). The value of x is accepted if a uniform random number
is less than (f+(x) + f−(x))/f+(x) at that x. If not, one starts over
from the step where xkG(x)-term is selected.

2.3 Monte Carlo Selection

From Eqs. 2 and 3 the average energy loss (below εc) is:
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where N c is the number of collisions in the step:

N c = ξ

[
εi

(
1

ε2
min

− 1
ε2
i

)
+
(

1
εi

− 1
εc

)
− β2

εmax
ln

εc

εi
+

εc − εi

2E2
0

]
. (10)

6



Both (dE/dx)R and σ are needed to determine a random ε as per Eq. 7.
This differ slightly from [1] where σ2 was taken as the second moment (about
the origin) times N c. See Sec. 5 for further discussion of this point.

The coefficients of the Hermite polynomials, Ci,j, in Eq. 1:

f(x) = G(x)
∑

i

∑
j

Ci,jHk(x) (11)

up to the desired order of approximation, are readily expressed in terms of
uj = κj/j!κ

j/2
2 . In Eq. 11, index i represents the order of approximation

(successive square brackets of Eq. 1) while j counts the number of Hermite
polynomials, Hk(x), (k = i + 2j) within the ith order. For example, up to
third order:

C1,1 = u3 k = 3 (12)
C2,1 = u4 k = 4
C2,2 = u2

3/2! k = 6
C3,1 = u5 k = 5
C3,2 = u3u4 k = 7
C3,3 = u3

3/3! k = 9.

In the program the higher uj are calculated recursively.

2.3.1 Domain

The first step selects the domain of x—above or below zero. The probability
for x > 0 is obtained by integrating Eq. 1 from zero to infinity (only odd
orders of Hi(x) contribute):

P (x > 0) =
1
2
− C1,1√

2π
+

3C3,1 − 15C3,2 + 105C3,3√
2π

(13)

+
−15C5,1 + 105C5,2 − 945C5,3 + 10 395C5,4 − 135 135C5,5√

2π

where the first and second terms of Eq. 13 apply, respectively, to 0th and
1st order, respectively. The third term applies only if the desired order of
approximation is greater than three and the fourth only when the order is
five or larger.
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2.3.2 Term Selection

Next a particular term of the type bkx
kG(x) is chosen, one which is positive

in the chosen domain. The bk are determined by collecting, within each
order of approximation, coefficients of the xk which derive jointly from the
Ci,j and the Hermite polynomials. To yield the selection probabilities, terms
which are positive in the chosen domain are integrated over that domain. For
k = 0 and k = 1 the integrals of xkG(x) equal 1/2 and 1/

√
2π, respectively.

For even powers of x(k ≥ 2)

Bk =
∫ ∞

0
bkx

kG(x)dx =
bk

2
(k − 1)!! (14)

while for the odd powers of x(k ≥ 3)

Bk =
∫ ∞

0
bkx

kG(x)dx =
bk√
2π

(k − 1)!! (15)

where m!! indicates the product m · (m − 2) · . . . The Bk, up to third order,
are listed below for even powers—common to both positive and negative x:

B0 =
1
2

(1 + 3C2,1) (16)

B2 =
1
2
45C2,2

B4 =
3!!
2

C2,1

B6 =
5!!
2

C2,2.

For odd powers in the x < 0 domain:

B1 =
1√
2π

(3C1,1 + 105C3,2) (17)

B3 =
2!!√
2π

(10C3,1 + 1260C3,3)

B5 =
4!!√
2π

21C3,2

B7 =
6!!√
2π

36C3,3

while for odd powers in the x > 0 domain:

B1 =
1√
2π

(15C3,1 + 945C3,3) (18)
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B3 =
2!!√
2π

(C1,1 + 105C3,2)

B5 =
4!!√
2π

(C3,1 + 378C3,3)

B7 =
6!!√
2π

C3,2

B9 =
8!!√
2π

C3,3

with similar expressions for higher orders. In the given the domain, a term
xkG(x) is selected by comparing a uniform random number versus successive
values of

∑k
0 Bj/

∑n
0 Bj where n is the total number of terms for the given

order of approximation [8].

2.3.3 Select x

Given a particular term, the x-selection procedure depends on whether x in
the selected term is to an even or odd power [9]. For even powers:

x =


−2 ln

i/2∏
1

ru + r2
G




1/2

(19)

where ru is a uniform (0 < ru < 1) random number and rG is a normally
distributed (rG = 0, σrG

= 1) random variate. while for odd powers:

x =


−2 ln

(i+1)/2∏
1

ru




1/2

(20)

where i represents the chosen power of x in both equations.

2.3.4 Accept or Reject

Finally, the positive and negative contributions to f(x) are evaluated at that
x to the specified order. If ru < (f+(x) + f−(x))/f+(x) = f(x)/f+(x) the
value of x is accepted. Otherwise one starts over by selecting a new xkG(x)
term since the probabilty used to determine whether x is above or below
zero already takes negative contributions to f(x) into account.
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2.4 Associated Angular Deflection

The (random) energy loss in a given step is ∆E = (dE/dx)R + xσ. There
is an ms angular deflection associated with this energy loss (from collective
µ–e interactions) which is estimated to be:

ϑ2 =
2me∆E

p2
0 − E0∆E

(21)

where p0 is the incident muon energy [1]. No distinction is made in this re-
gard between the two energy regimes—contrary to [1] where the low energy-
transfer regime is lumped together with multiple scaterring for estimating
angular deflection. The latter overestimates the contribution of electrons to
angular deflection since most of the energy transfer is spent on excitation of
the atom rather than on imparting transverse momentum to it. Dropping
the distinction in kinematic treatment allows the two regimes to be combined
and simplifies energy loss selection. This matter probably deserves more at-
tention than is devoted to it here because the large difference in Eq. 21
between using me and MA can lead to significant differences in 〈ϑ2〉1/2. It is
clear, however, that the algorithm can accomodate either model and more
sophisticated ones as well.

The distribution is assumed to be Gaussian in projected angle with pa-
rameters (0, ϑ/

√
2) with ϑ from Eq. 21. In principle, higher moments could

also be estimated and a random angle determined using the Edgeworth pro-
cedure as for multiple scattering off nuclei, see below. However, these angles
are typically smaller than from scattering off a nucleus—and larger angles
are determined individually—while the cross section is lower by a factor of
Z−1, so the Gaussian assumption appears justified.

2.5 Large Losses

Above the cut-off energy, εc, events are fully simulated individually. This
permits keeping track of energy-angle correlations due to µ–e interactions
and—where needed—determine the trajectory of the struck electron (δ-ray).
In convenient but roundabout fashion εc is determined from a specified (ap-
proximate) number of collisions to be treated individually. Then, given εc,
the precise average number of collisions is calculated and a random number
of collisions is selected from a Poisson distribution. If non-zero then for
each collision a random energy loss is determined from Eq. 2 by selecting an
energy loss (εc < ε < εmax) from a ε−2 distribution and taking account of
the factor in square brackets by rejection. The angles associated with the
event follow from two-body kinematics.
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In terms of cpu-time, an optimum value of N>, the number of events
to be simulated individually, appears to lie around two to five. Increasing
the number of individual simulations is easily seen to be time consuming,
while lowering N> increases rejection rates in the Edgeworth algorithm and
renders it less efficient.

3 Multiple Scattering

The additive quantities for multiple scattering are the projected angles, θx

and θy. In contrast to energy loss, their domain includes negative as well as
positive real numbers with probabilities independent of the sign of θx or θy.
As a result all odd κ vanish along with many terms in the series of Eq. 1. The
procedure of [2] (see App. 1) simplifies considerably if the odd indexed κ are
ignored from the start. Using the abbreviation: uk = κk/k!κk/2

2 introduced
above, one obtains:

f(x) = G(x) { 1 + [u4H4(x)] +
[
u6H6(x) +

1
2!

u2
4H8(x)

]
(22)

+
[
u8H8(x) +

1
2!

2u4u6H10(x) +
1
3!

u3
4H12(x)

]

+ [u10H10(x) +
1
2!

(
2u4u8 + u2

6

)
H12(x)

+
1
3!

3u2
4u6H14(x) +

1
4!

u4
4H16(x) ]

+ [u12H12(x) +
1
2!

(
2u4u10 + u2

6

)
H14(x) +

1
3!

(
3u2

4u8 + 3u4u
2
6

)
H16(x)

+
1
4!

4u3
4u6H18(x) +

1
5!

u5
4H20(x)] } .

Again successive orders (evens only here) are grouped within square brack-
ets. In terms of the full Edgeworth series, Eq. 22—and the program—runs
through the 10th order. Comparison with the lower orders of Eq. 1 shows
that terms containing only even κ survive to contribute to Eq. 22. It is
assumed that four is the minimum order (first line of Eq. 22).

3.1 Physical Model

As with energy loss, a cut-off angle is chosen below which scattering is
treated collectively while above it individual events are fully simulated. Be-
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low cut-off the number of muons at projected angle, θx, after a Monte Carlo
step of length ∆ is represented by [10]:

v(θx) =
π

2
NAvρ

A

(
2Ze2

p0β

)2
θc√

θ2
0 + θ2

c

∆

(θ2
x + θ2

0)
3
2

=
θc√

θ2
0 + θ2

c

K∆

p2
0β

2 (θ2
x + θ2

0)
3
2

(23)
where θc is the cut-off angle. The angle θ0 is associated with screening of
the nuclear charge by electrons and is based on tables of atomic form factors
by Hubbell et al. [11]. Eq. 23 differs slightly from its counterpart in [10]:

(1)
(
θ2
x + θ2

0

) 3
2 in the denominator, instead of θ3

x, as follows from assuming(
θ2 + θ2

0

)−2 instead of θ−4 for the polar angular dependence in Rutherford’s
formula, and (2) a factor θc√

θ2
0+θ2

c

due to cutting off the θy distribution at

±θc since an event with |θx| < θc but |θy| > θc is treated as an individual
event. This extra factor, typically very close to unity, is the ratio of the
integral of the distribution between ±θc to that between ±∞. There is a
similar distribution for θy independent of v(θx). For small angles, Eq. 23 is
preferred for simplicity over the more precise Rosenbluth-type formula with
atomic form factor. In this regime it has been shown to be in quite close
agreement [12] with the latter.

3.2 Monte Carlo Strategy

The x from Eq. 22 is again a standardized random variable:

x =
ϑx

σ
(24)

where ϑx indicates
∑

θx over a Monte Carlo step, and ϑx = 0 here. The
strategy is essentially the same as for energy loss selection, but now the
domain is over all reals, with ϑx and −ϑx equiprobable. Therefore sign
selection can be saved for last—after a satisfactory value of |ϑx| has been
chosen. The entire procedure is repeated for ϑy.

3.3 Monte Carlo Selection

The σ in Eq. 24 is readily obtained from Eq. 23:

σ = κ2 = K∆


 θc√

θ2
0 + θ2

c

ln



√

θ2
c + θ2

0 + θc√
θ2
c + θ2

0 − θc


− 2θ2

c

θ2
c + θ2

0


 (25)
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where the first equality holds for any distribution. The higher order κ are
obtained recursively. By partial integration:∫

θn
x(

θ2
x + θ2

0

)3/2
dθx = − θn−1

x(
θ2
x + θ2

0

)1/2
+ (n − 1)

∫
θn−2
x(

θ2
x + θ2

0

)1/2
dθx. (26)

After some manipulation this leads to:

κn =
2K∆ θn

c

(n − 2)
(
θ2
0 + θ2

c

) − n − 1
n − 2

θ2
0κn−2. (27)

Since only κn with even n are required, this permits for quick generation of
the series of Eq. 22 to any order, with Eq. 25 as the starting point.
The x selection procedure is much like for the energy loss case:

• The positive terms of the series are identified and their integrals are
obtained.

• A term of the type bkx
kG(x) is selected among them.

• An x-value is chosen in accordance with this distribution. Since k is
always even, only Eq. 19 applies.

• At that x, positive and negative contributions to f(x) are evaluated—
with x accepted only if ru < (f+(x) + f−(x))/f+(x). Otherwise a new
bkx

kG(x) is selected.

• An equi-probable sign of x is chosen.

3.4 Associated Energy Loss

The energy loss associated with (nuclear) multiple scattering through angle
ϑ =

√
ϑ2

x + ϑ2
y in a given step is estimated to be

∆ε =
p2
0ϑ

2

2MA
(28)

where MA is the nuclear mass of the target. This follows from equating
the momentum transfers to the target nucleus and to the muon in each
individual event:

2MA∆ε = p2
0θ

2 (29)

and summing over all events in a step, p0 being treated as constant. Eq. 28
corresponds to the average energy loss for a given multiple scattering angle.
Fluctuations about this value are ignored since ∆ε is expected to be small
compared to losses due to electron scattering.
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3.5 Large Deflections

Scattering with angles larger than θc in a single event is simulated individu-
ally. The cross sections adopted here for these processes are discussed in [12].
For targets other than hydrogen this includes both coherent and incoherent
(wherein a nucleon is liberated) scattering. As with large energy losses, a
cut-off angle is determined by specifying an approximate number of events
to be treated individually. Then, given this cut-off angle, an upper limit
to the average number of collisions is determined and a random number of
events is selected from a Poisson distribution. Upper limit here refers to the
average number as determined from a simplified formula which represents
a strict upper bound to the cross section. In the Monte Carlo procedure
this upper limit reduces to the proper value by rejection. At present, the
(simplified) cross sections are calculated for each step. Savings in cpu time
would result by precalculating the cross sections and relying on interpolation
during the Monte Carlo. The number of collisions to be treated individually
is again a compromise between extra time spent on simulating collisions and
increased rejection rates for the collective treatment. But it can be set much
lower here than for energy loss: in the 0.05 to 0.5 range.

One concern is the demarcation between collective—expressed in terms
of projected angles—and individual scattering regime which relies on polar
angles. A convenient strategy, adopted here, is to select individual (polar)
θ on the θ > θc domain and collective (projected) θx, θy on the domain
−θc < θx,y < θc. In the θx,y plane these domains overlap in the corners of a
2θc × 2θc square. Therefore when, in an individual (coherent) scattering, θx

and θy are each less than θc (but θ2
x + θ2

y > θ2
c , as assured by selection), the

event is rejected without reprise.

3.5.1 Hydrogen

For hydrogen the cross section is assumed as given by Berestetskii et al. [13]:

dσ

dt
=

πα2

p2
0t

2
{ G2

E

[
(4ME0 − t)2

(4M2 + t)
+ t

]
(30)

+
t

4M2
G2

M

[
(4ME0 − t)2

(4M2 + t)
− (4m2 − t

)]}FA(t)

where m and M are the muon and proton mass and GE and GM are the
proton electric and magnetic form factor, respectively. Contrary to [12] t
is the negative 4-momentum transfer (and thus a positive quantity) here as
well as in the program. Selection proceeds as follows:
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• The average number of collisions is based on an upper limit of Eq. 30
given by:

dσ

dt
=

πα2

p2
0

{ 1
t2

[
(4ME0 − tc)

2

(4M2 + tc)
− tc

]
(31)

+
2.792

4M2t

[
(4ME0 − tc)

2

(4M2 + tc)
−
(
4m2 − tc

)]}
in which the square brackets of Eq. 30 are replaced by their maximum
values occurring at t = tc. The constant 2.79 represents the ratio
GE/GM assumed to be independent of t here.

• For each term associated with the square brackets of Eq. 31 the av-
erage number of collisions is determined and a random number to be
simulated is selected from a Poisson distribution.

• If that number is nonzero then t is chosen, either ∝ t−2 or ∝ t−1,
depending on the term.

• This t is accepted if a uniform random number is less than the ratio
of the square bracket of Eq. 30 pertaining to the term selected, times
the atomic form factor, to the corresponding bracket of Eq. 31—all
evaluated at the chosen t.

• If the selected t is rejected no collision takes place.

Above typical cut-off angles the atomic form factor will be very close to unity
and could be neglected. In most applications the approximation t = p2

0θ
2

should be sufficient to determine θ.

3.5.2 Coherent Nuclear

For nuclear targets, the coherent cross section assumed is [12]:

dσ

dt
=

Z2πα2

4M2p2
0t

2

[
(4ME0 − t)2 − (4M2 + t

)
t
]
F 2

N (t)FA(t). (32)

Here M is the nuclear mass while FN and FA are the nuclear and atomic
form factors, respectively. With only one term present, selection is simplified
vs µ–p but otherwise proceeds along the same lines. Eq. 32 is correct only for
a spin zero nucleus. For some of the lighter nuclei considered here with non-
zero spin, such as lithium and boron, the magnetic term may still contribute
although at a much reduced level relative to hydrogen (after scaling by
Z2) [14]. For these materials, it is thus likely that Eq. 32 underestimates
large angle scattering somewhat.
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3.5.3 Incoherent Nuclear

Using the model of [12] for incoherent scattering, the program calculates—
for each nuclear species present—upper limits to the probabilities for the
muon to undergo incoherent scattering with a nuclear constituent: (a) pro-
ton (1st or E-term), (b) proton (2nd or M-term), or (c) neutron (M-term), in
the manner of Sec. 3.5.1. Each probability is further split in two according
to whether the nucleus remains bound or not. These probabilities are taken
to correspond to integrals of Eq. 31 between t-limits derived from energy
systematics for each nuclear species. Selection of t and subsequent rejection
test are again as above. An empirical ‘geometric’ factor ( < 1 )multiplies
the cross section to take ‘shadowing’ into account. This factor is taken as
the ratio of the (high-energy) nuclear inelastic cross section to the sum of
the inelastic cross sections of the individual nucleons.

4 Composite Targets

Since interest is mainly in light nuclei, specific nuclear (and atomic) data
are provided in the program for the elements with Z = 1–8 as well as for five
low-Z compounds of potential interest to muon cooling: LiH, B4C, BeO,
H2O, and air (represented as 80% N2, 20% O2). This appears preferable
since generic nuclear models are almost exclusively applicable only to heav-
ier nuclei. For energy loss, average ionization potentials and density effect
parameters for many compound targets (including those listed above) are
given by Sternheimer et al. [15] and Monte Carlo simulation thus can pro-
ceed exactly as for monatomic targets. For multiple scattering, the angular
distribution may be written as a sum over elemental targets

∑
i vi(θx), as

per Eq. 23. Likewise, the κ may be evaluated as a sum over terms, with
common cut-off angle θc:

κj =
∫ θc

−θc

θj
x

n∑
i

vi(θx)dθx (33)

= 2π
NAvρe4

p2
0β

2W
∆

n∑
i

niZ
2
i

θc√
θ2
0,i + θ2

c

∫ θc

−θc

θn
xdθx(

θ2
x + θ2

0,i

)3/2

where W is the molecular weight, ni the number of atoms of type i belonging
to the compound, and θ0,i are the screening angles of species i, precalculated
and stored in the program. With these κ the angular distribution is again
represented by Eq. 22. For mixtures ni is taken proportional to the relative
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number of atoms present while W =
∑

i niAi. In evaluating energy losses
associated with multiple scattering, MA in in Eq. 28 is replaced by a weighted
average:

MA =
∑

njZ
2
j∑

njZ2
j /MAj

. (34)

5 Cumulant Calculation

The parameters of Eqs. 1 and 23 are expressed entirely in terms of the κ
which are approximated by the moments of the single event distribution.
For energy loss, the validity of this is demonstrated in [1] for the Landau-
Vavilov differential equation and for a similar equation governing multiple
scattering. However, in general the κ differ from the moments about the
origin by a set of terms (of both signs, expressed in terms of the lower
moments) which increase rapidly in number with k [2]. More convenient
expressions for the κ, written in terms of both moments and lower order κ,
are listed in App. 3. The Vavilov approach essentially assumes that N c in
Eq. 9 can be taken to be infinite—on account of εmin → 0 in Eq. 10—so
that at least the second cumulant and second moment about zero can be
taken to be equal in this case. Under this assumption dominance of the
highest moment is likely for the higher cumulants as well. Alternatively,
in the more general approach (finite N c), the κ can be calculated from the
moments of the single event distribution (Eqs. 2 or 3) and then—on the basis
of additivity of the cumulants—multiplied by the number of events expected
in a Monte Carlo step. This is somewhat more cumbersome, particularly
for higher orders. Comparisons show both methods give close to the same
results and typical differences may be compared to those between successive
orders of the Edgeworth series.

For example, in calculating the energy loss distribution, for 0.2 GeV/c
muons incident on 1 cm of beryllium, and with five collisions to be treated
individually, the relative rms difference between the sixth order in the Edge-
worth series and the third, fourth, and fifth orders are about 2 · 10−2,
1.1 · 10−2, and 4 · 10−3, respectively, averaged over a domain between −3.5σ
and 7σ. (Relative to peak value, probabilities at −3.5 σ and at 7 σ are
reduced by 5 · 10−5 and 3 · 10−7, respectively. Below around −3.5 σ the
distribution rapidly falls to zero.) For the same conditions, the relative rms
difference between using the full κk and using the kth moments about the
origin is 7.5·10−3. Using Eq. 9 for κ2, instead of the 2nd moment about zero,
this measure improves to 5 ·10−4. The comparison is even better (1.5 ·10−4)
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if one uses Eq. 9 only in the Gaussian part of Eq. 1. These last results
are approximately the same for orders three through six. It is interesting
to note that the κ, calculated both ways in the above example, differ by a
few parts per thousand while agreement of the κk/κ

k/2
2 ratios varies from

1.5 · 10−3 to about 2%. The better agreement of the probability densities
suggests that some cancellations occur which lead to (approximately) the
same underlying expression either with the full κ or with the moments in
the Edgeworth series.

For multiple scattering, approximating the κ by the second moments
appears a priori even better justified. Since ϑx = ϑy = 0, κ2 coincides
with the second moment about zero. However, for κk, k ≥ 4 differences
appear and this will lead to differences in the distribution. As with the
Edgeworth series, the vanishing odd moments result in much fewer terms
for higher order κ. Using the same example as for energy loss, but with a
large angle cut-off equivalent to 0.2 scatterings to be treated individually,
the relative rms differences between the tenth order result and that of the
fourth, sixth, eight order are, respectively, 7 · 10−6, 7 · 10−7, and 1.1 · 10−7

averaged over a domain of ±3.5 σ. The same differences averaged over ±7 σ
are 8 · 10−3, 1.7 · 10−3, and 1.0 · 10−4. (Probabilities at ±3.5 σ and ±7 σ are
down to 2.5 · 10−4 and 4 · 10−11, respectively, from peak value.) For orders
four through ten of the Edgeworth series, the two methods of estimating the
cumulants produce agreement in the angular distribution to within about
1 · 10−5 averaged over ±3.5 σ and 1 · 10−4 over ±7 σ. For k ≥ 4 relative
rms difference of the κk evaluated both ways range form 0.2 to 1.5%, with
roughly the same differences for the κk/κ

k/2
2 . As in the energy loss example,

the probability distributions again agree better than do the κ or κk/κ
k/2
2 on

which they are based.
Nevertheless, when dominance of the higher moments is not well estab-

lished full calculation of the cumulants may be necessary. However, since
smaller higher moments imply quicker convergence to a Gaussian, lower
orders of the Edgeworth series will be sufficient for such cases. In this con-
nection, there are presently three options in the program: (1) assume the kth

moments about zero for κk throughout, (2) ditto, but use the square root
of the second moment about the mean for scaling the standardized random
Gaussian variate determined by the Monte Carlo, (Eq. 7), and (3) work with
the fully evaluated κ throughout. Note that options (1) and (2) are identical
for the angular distribution. Options (2) and (3) do not require any extra
effort on the part of the user when a different distribution is introduced.
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6 Concluding Remarks

In [1] comparisons are presented which demonstrate the validity of the
method detailed here. The main focus there is energy loss and by going
to 5th order excellent comparisons with analytic calculations are produced.
Higher orders require progressively more code and more computation time
for lesser gains in accuracy. Therefore, for present applications, the orders
of the series included—up to 6th in the energy loss calculation, 10th in the
multiple scattering—should be more than sufficient. If still higher orders
are desired the program must be augmented via the methods sketched in
App. 1.

An important advantage of the present method is demonstrated above:
an energy loss cross section defined differently in two energy regimes still re-
sults in a single energy loss distribution [16]. Likewise multiple scattering in
a compound or mixture, with different parameters for each component, re-
sults in a single angular distribution. In each instance more work is required
to generate the distribution but, after that, the calculation is the same as for
a single energy regime or for a monatomic target. The energy– and angu-
lar distributions—though rather formidable looking, see Eqs 1 and 22—are
nonetheless relatively easily sampled.

A tempting shortcut is to precalculate and store certain quantities as
a function of muon energy for each material present. Then, during exe-
cution, to rely on interpolation with respect to muon energy to save cpu
time. Since the same energy range and materials are common to many prob-
lems such precalculated tables could be used repeatedly. It is important to
note, however, that different orders of the Edgeworth series scale differently
with respect to steplength—which may vary during a Monte Carlo simu-
lation. Ordinarily, at each step, the precise steplength is used to evaluate
the coefficients of the Edgeworth series and related quantities. When an
interpolation scheme is used, a standard steplength is adopted in the initial-
ization, then during simulation interpolated values of each order are rescaled
to the correct steplength and recombined. Such scaling is exact—with the
usual caveats that a step must be small enough to be well represented by
a straight line segment and that variation of the coefficients over its length
is negligible. At present, an interpolation version is not included as an op-
tion. To accommodate steplength scaling, each order must be pretabulated
separately, tables must be spaced sufficiently close, and the interpolation
scheme must be sufficiently powerful to yield accurate results. This demand
on computer resources makes interpolation less attractive. After brief ex-
perimentation with the energy loss algortihm, savings in cpu time compared
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with the ‘long’ version did not seem significant enough to proceed further—
although this should be further examined. Precalculation and interpolation
of the more complicated formulae for large angle scattering may also be
worth studying. A more thorough study of the cumulant estimation prob-
lem of Sec. 5 as well as intercomparison of various orders of the series might
yield better insight and provide valuable practical information with regard
to optimizing the program to the problem at hand.

Another area of potential investigation lies in the selection scheme of
the Edgeworth series. The one offered here suffers from high rejection rate
when the threshold is set high. For energy loss or multiple scattering one
can always resort to simulating more individual events but this may be more
troublesome in other applications if the distributions corresponding to sin-
gle events are not that simple. Perhaps some precalculation/interpolation
scheme may likewise be useful here. Series similar to Edgeworth’s, such as
Gram-Charlier, which also approximate distributions based on a Gaussian-
plus-Hermite-polynomials should also be examined. While the Edgeworth
series is preferred in principle [2], others may well outperform it if compu-
tational considerations are included.

The Edgeworth series permits negative values contrary to what is re-
quired for a probability density. At higher orders such ‘negative probabil-
ities’ occur over narrow intervals where the true probability is very small.
In the Monte Carlo this creates no practical difficulties: selection is done
everywhere from positive terms and if negative terms predominate in some
interval an initial selection in that neighborhood will invariably be rejected
resulting in zero probability. Since the algorithm always selects one outgoing
particle for every incoming one the distribution is effectively renormalized
by uniformly multiplying the positive regions of the Edgeworth series by an
appropriate factor close to unity.

For convenience in making modifications or applications to other prob-
lems, the calculation of the moments is done in a routine separate from
Monte Carlo selection based on them. The user thus provides the moments
calculation to suit a particular model or application while the Monte Carlo
selection routine—with the given moments—remains ‘content-free’. Simi-
larly, if complete evaluation of the cumulants is desired this is performed
in a separate routine which is independent of the application. In principle,
the same routine could be used for both energy loss and scattering but, as
a practical matter, the vanishing odd order moments of the angular distri-
bution invites going to higher orders which would either become unwieldy
for the energy loss problem or cause a lot of wasteful operations in the scat-
tering case. Since in other applications the elementary probability may or
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may not be an even function of its argument, it may be useful to have both
sets of routines available.

In summary, the method generates a statistical distribution of a ran-
dom variable summed over many events directly from the moments of the
probability distribution for individual events. The domain of the variable
may include positive as well as negative values. It must be strictly additive
over all events—which is why it wouldn’t work, e.g., for polar angles in the
multiple scattering problem. The distribution obtained is particularly at-
tractive for Monte Carlo selection. When evaluated to reasonably high order
the approximation does quite well [1]. While its analytical representation in
terms of the Hermite polynomials is rather unwieldy, it may nevertheless also
serve to generate the distribution in numerical or graphical form—perhaps
with ‘negative probabilities’ smoothed over. This may be useful even where
an analytic expression for the statistical distribution exists since it may be
quite complicated and tied to a specific—often simplified—model of the un-
derlying interaction. Such is indeed the case for both the energy loss and
scattering examples discussed here since neither the distribution of Vavilov
or of Moliere is a closed form expression and evaluation requires considerable
numerical work. It is hoped that the detailed look provided here at these
examples might encourage use of this method in other applications.

My thanks to S. Striganov for helpful comments on the manuscript.

Appendix 1

The derivations of the Edgeworth series for both energy loss, Eq. 1, and
angular distribution, Eq. 22, are briefly sketched below.

Energy Loss

According to [2] (top p.228, sec 17.7):

et2/2Ψ(t) =
∞∑

h=0

(it)2h

h!

[ ∞∑
ν=1

λ′
ν+2

(ν + 2)!

(
it√
n

)ν
]h

(35)

where Ψ(t) is the characteristic function associated with the probability
density, f(x), one wishes to approximate. The rhs of Eq. 35 is expanded
and terms up to the desired power (the sixth here) of n−1/2 are retained.
Physically, the n in Eq. 35 corresponds to the average number of encounters
in a Monte Carlo step. Up to sixth order, with the abbreviation yj =
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λ′
j(it)

j−2/j! and with terms grouped according to successive values of sum
index h:

et2/2Ψ(t) = 1 +
(it)2

1!

[ y3

n1/2
+

y4

n
+

y5

n3/2
+

y6

n2
+

y7

n5/2
+

y8

n3
+ ...

]
(36)

+
(it)4
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[y2

3

n
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2y3y4
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+

y2
4
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+

2y3y5
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+

2y3y6
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+

2y4y5
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+

y2
5

n3
+

2y3y7

n3
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2y4y6

n3
+ ...]

+
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3
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3y2
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+

3y3y
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4
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+

6y3y4y5
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]
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(it)8
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[
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n2
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4y3
3y4
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4y3
3y5
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6y2
3y

2
4
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]

+
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5!

[
y5
3

n5/2
+

5y4
3y4

n3
+ ...

]

+
(it)12

6!

[
y6
3

n3
+ ...

]
.

Re-grouped according to power of n−1/2, and with the y expressed in terms
of the λ′, this becomes:

et2/2Ψ(t) = 1 +
1

n1/2

[
λ′

3

3!
(it)3

]
+

1
n

[
λ′

4

4!
(it)4 +

λ′2
3

2!3!2
(it)6

]
(37)

+
1
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Ref [2] writes both characteristic function and probability density in terms
of the coefficients bi,j, belonging to the powers of it as well as to the Gaussian

22



derivatives:

Ψ(t) = e−t2/2

[
1 +

∞∑
ν=1

bν,ν+2(it)ν+2 + bν,ν+4(it)ν+4 + ... + bν,3ν(it)3ν

nν/2

]
(38)

f(x) = G(x) +
∞∑

ν=1

(−1)ν bν,ν+2G
(ν+2)(x) + bν,ν+4G

(ν+4)(x) + ... + bν,3νG(3ν)(x)
nν/2

where Gm(x) = (−1)mHm(x)G(x) is the mth derivative of G(x), the Gaus-
sian probability density. The bi,j in the first member of Eqs. 38 may now
be identified with the corresponding coefficients of the powers of n and it
in Eq. 37 and then introduced into the second member. Using the relations
λ′

ν = κ′
ν/σ′ν , σ′2 = κ2/n, κk = nκ′

k as per Eqs.17.6.7 and 8 of [2]—and
substituting for the Gm(x)—Eq. 1 is obtained. (Here primed quantities
pertain to the single events while unprimed ones pertain to the composite
distribution.)

Angular Distribution

The series used for multiple scattering could be derived from the full Edge-
worth series by continuing the above procedure up to 10th order and then
setting all odd κi equal to zero. It is more readily obtained by keeping only
the even subscripted λ′

ν in Eq. 35. Going to 10th order, or to n−5, one
obtains:

et2/2Ψ(t) =
(it)2
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+
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.

Steps similar to those for the series used for energy loss now lead to Eq. 22.

Appendix 2

The Hermite polynomials, Hi(x), needed here are reproduced below for con-
venience. They differ from those defined in some places by an overall factor
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H = H ′/2i/2 and a scaling factor x = x′/
√

2, the unprimed quantities being
associated with the definition of [2] and adopted here.

H1(x) = x (40)
H2(x) = x2 − 1
H3(x) = x3 − 3x

H4(x) = x4 − 6x2 + 3
H5(x) = x5 − 10x3 + 15x

H6(x) = x6 − 15x4 + 45x2 − 15
H7(x) = x7 − 21x5 + 105x3 − 105x

H8(x) = x8 − 28x6 + 210x4 − 420x2 + 105
H9(x) = x9 − 36x7 + 378x5 − 1260x3 + 945x

H10(x) = x10 − 45x8 + 630x6 − 3150x4 + 4725x2 − 945
H11(x) = x11 − 55x9 + 990x7 − 6930x5 + 17 325x3 − 10 395x

H12(x) = x12 − 66x10 + 1485x8 − 13 860x6 + 51 975x4 − 62 370x2 + 10 395
H13(x) = x13 − 78x11 + 2145x9 − 25 740x7 + 135 135x5 − 270 270x3

+ 135 135x

H14(x) = x14 − 91x12 + 3003x10 − 45 045x8 + 315 315x6 − 945 945x4

+ 945 945x2 − 135 135
H15(x) = x15 − 105x13 + 4095x11 − 75 075x9 + 675 675x7 − 2837 835x5

+ 4729 725x3 − 2027 025x

H16(x) = x16 − 120x14 + 5460x12 − 120 120x10 + 1351 350x8 − 7567 560x6

+ 18 918 900x4 − 16 216 200x2 + 2027 025
H18(x) = x18 − 153x16 + 9180x14 − 278 460x12 + 4594 590x10 − 41 351 310x8

+ 192 972 780x6 − 413 513 100x4 + 310 134 825x2 − 34 459 425
H20(x) = x20 − 190x18 + 14 535x16 − 581 400x14 + 13 226 850x12

− 174 594 420x10 + 1309 458 150x8 − 5237 832 600x6 + 9820 936 125x4

− 6547 290 750x2 + 654 729 075 .

Appendix 3

The cumulants, κk, are usually expressed in terms of the moments either
about the origin, µ′

i, or about the mean [2], e.g., in [17] they are listed in
this fashion up to 10th order. The cumulants simplify considerably if the
rhs are expressed in terms of both µ′

i and lower order κk. They are listed
below in this manner, to order needed here. For energy loss where all orders
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must be included:

κ2 = µ′
2 − µ′2

1 (41)
κ3 = µ′

3 − 2κ2µ
′
1 − µ′

1µ
′
2

κ4 = µ′
4 − 3κ3µ

′
1 − 3κ2µ

′
2 − µ′

1µ
′
3

κ5 = µ′
5 − 4κ4µ

′
1 − 6κ3µ

′
2 − 4κ2µ

′
3 − µ′

1µ
′
4

κ6 = µ′
6 − 5κ5µ

′
1 − 10κ4µ

′
2 − 10κ3µ

′
3 − 5κ2µ

′
4 − µ′

1µ
′
5

κ7 = µ′
7 − 6κ6µ

′
1 − 15κ5µ

′
2 − 20κ4µ

′
3 − 15κ3µ

′
4 − 6κ2µ

′
5 − µ′

1µ
′
6

κ8 = µ′
8 − 7κ7µ

′
1 − 21κ6µ

′
2 − 35κ5µ

′
3 − 35κ4µ

′
4 − 21κ3µ

′
5 − 7κ2µ

′
6 − µ′

1µ
′
7.

Eqs. 41 permit confident extrapolation to higher orders:

κn = µ′
n −

n−1∑
i=1

(
n − 1

i

)
κn−iµ

′
i (42)

something which seems much harder to do when the κk expressed solely in
terms of the moments. For the angular distribution all odd µ′

i and κk vanish
and only even κk are needed:

κ2 = µ′
2 (43)

κ4 = µ′
4 − 3µ′2

2

κ6 = µ′
6 − 10κ4µ

′
2 − 5µ′

4µ
′
2

κ8 = µ′
8 − 21κ6µ

′
2 − 35κ4µ

′2
4 − 7µ′

6µ
′2
2

κ10 = µ′
10 − 36κ8µ

′
2 − 126κ6µ

′
4 − 84κ4µ

′
6 − 9µ′

8µ
′
2

κ12 = µ′
12 − 55κ10µ

′
2 − 330κ8µ

′
4 − 462κ6µ

′
6 − 165κ4µ

′
8 − 11µ′

10µ
′
2

In the program the κk can thus be evaluated recursively. As Eqs 41 and 43
indicate, full evaluation of the higher order cumulants adds to computation
time—though perhaps not prohibitively so for most applications.
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